Female Feelings and Brash Boys??

It’s Friday, it’s Halloween, and our football team is playing tonight in the section finals for the first time in about 30 years.  To think that solidifying understanding of domain, range, increasing and decreasing functions was going to be a priority for my college algebra class was a farce and so I decided to make the class more productive.  We watched the Simpsons. And I ate my weight in Swedish Fish.

Image from Wikipedia

Image from Wikipedia

Girls Just Wanna Have Sums pokes fun at the stereotype that men do better in math and are inherently aggressive and women want to sit and talk about their feelings.  Consequently, Springfield Elementary is divided into a girls school and a boys school which embody those stereotypes.

http://player.foxfdm.com/simpsons/embed-iframe.html?videourl=http://link.theplatform.com/s/fng-fx/tO87mhBBqh5L?mbr=true&policy=

(If you weren’t aware, every Simpson’s episode ever created is available on FX’s new website, Simpsons World.)

After the show, I asked the students to write about their feelings on this stereotype and how it plays out in the United States.  I then asked them to describe a satirical jab that they found particularly disturbing or upsetting.  As a math teacher, I sometimes lack the inclination to ask students how they feel on a particular controversial topic; but I’m always glad when I do ask.  Acknowledging differences that exist in the ways males and females approach math is important.  But this episode was more about educational access to high level mathematics.

The majority of what they found disturbing was that the girls weren’t given the same opportunities as the boys to experience challenging mathematics.  As I responded to their submissions, I took the opportunity to push their thinking further and ask “Are there instances, other than gender, where students are not given the same educational opportunities?”  I hope that my feedback will foster a dialog about the importance of all students having access to a high quality education, beyond inequalities based on gender.  Because these inequalities exist, maybe not based on gender, but definitely based on race and socioeconomic background.  I’d like to continue to help them think about what that means for those students.

What Questions Do They Have?

I’m always delighted by the extra wave of energy students put forth when they are asked to develop their own question to a scenario.  I love my job, and this year has started amazingly.  But today was probably my favorite day thus far.

College Algebra:  

Since we are working on quadratics, we did the Many or Money scenario from the Math Forum Problems of the Week.  It’s interesting (and almost entertaining) to watch them discover that there is no question.  This is the first time we’ve done an activity where they developed the question so they came up with the questions I would have expected:

  • What price will maximize profit?
  • How many students would go if the price were $8?
  • How many students will attend at the maximum profit?
  • (My favorite) Can you write an equation that models Ticket price and Profit?

They were able to get started on answering some of these questions.  I had them work on one large sheet of paper in order to share their work.  The period ended before they could wrap up their work.  Here is what one group has so far:

1008141405-1

When talking with teachers about using the Notice and Wonder strategy is usually surrounding the unexpected “wonderings” that students will have.  I think it’s important to allow them to have that creativity of asking outlandish questions like, what is the band’s favorite pre-concert meal?  But to make sure that the math goals are met, shifting their focus on what we can mathematically deduce from the scenario.  I usually ask what would I most likely ask about this scenario and what questions do you have about this scenario?  

 

Algebra 2:

Last year, with this same class, we examined Val’s Values.  The authentic, real-world awesomeness of that particular lesson was going to be impossible to re-create, but the scenario was still applicable and intriguing to this new group of students.

Last year, my students insisted that the ages of both Val and Amir were vital to answering the question Who spends more on jackets over their lifetime?  Most fascinating to me was their estimations of Val and Amir’s ages:

1008140948a

Desmos made up  a nice scatter plot for us that we could also Notice and Wonder about:

7dzmdvzq1g

And Val, my students were slightly disappointed that they didn’t get to examine the entire $300 jacket.  They are VERY curious about it.  😉

 

 

If You Give Homework, I’m Talking to You

Maybe it’s because it’s Friday and this has been one action packed week, but I am FIRED UP.  I’m fired up about the amount of out-of-school homework we give our students, especially in math class.

Casey Rutheford had a great idea the other night.  He did a Twitter search for “math homework” and examined the results.  Go ahead and take a look for yourself.  You may not be shocked at all, but reading tweet after tweet of math homework making students cry should make you, as an educator, want to sob.   Additionally, with impeccably good timing, John Stevens gave us all something to think about in regards to the homework debate.  The entire post is worth every second of time you can spend with it.  He highlights the student voices in this conversation.  Those voices are the ones we often aren’t really listening to.  He reminds us that there is a whole child to develop, not just a math brain.

The big question I have for my fellow educators is:  are you taking the time to listen to your students’ voices?   Are you considering the education of the whole child, especially during the hours when they aren’t in school?  What purpose does the homework serve?  Is it really fulfilling that purpose?  Do we really feel students do better as a result of homework, or are there other factors that play a much bigger role?

I’m not saying don’t ever assign homework.  I just don’t think homework needs to be a knee-jerk reaction to the end of a math lesson.

 

 

 

 

 

 

Do You Let Yourself Fail?

I sat down this weekend to do some recreational mathematics with a friend.  Maybe you know him; his name is Justin Aion.  He writes a pretty cool blog over at Re-Learning to Teach.

I made it a goal of mine this year to work on some geometry for a few reasons.  First, I’m not that great at it.  Second, the students at our school historically struggle with it as well.  Two of the problems we chose were from the Five Triangles blog.  And to be completely honest, I sucked.  I sucked a lot.  I sat there for much of the Google Hangout drawing and drawing the figures and then writing down what Justin had eloquently discovered.  And then nodding in agreement. Here are pictures of Justin’s and my respective work:

Bw7xzT5IQAA-A1-0908141738a

Then we decided to work on something I thought was more my cup-o-mathematics tea.  Turning to the Math Forum, we tried this weeks scenario for Trig/Calculus.  How silly of me to assume that since this is just the beginning of the school year, perhaps the task could be solved using Algebra.  Of course Justin busted out the calculus seamlessly and like a pig in numerical-feces, excitedly worked his way to viable solution. (It turns out that applying algebra to this problem was not as straight forward as it might have seemed.) Again, I felt defeated by the mathematics.

The point here is that doing math that’s unfamiliar is hard.   Thinking deeply about problems is hard work.  Applying previous knowledge to a new situation is also taxing.  What I really took away from hours of difficult mathematics was an empathy for the anxiety of many of my students when I ask them to do the same.  It is disingenuous of me to expect my students to persevere through problems if I’m not willing to do the same.  So, I’m committing to being uncomfortable, mathematically, and I will get better.  My geometry skills will improve, and perhaps I’ll be able to revisit my long lost calculus pals, derivative and integral.  The important thing is that I’m willing to try and willing to fail.   In the long run, I think my students will benefit, and I know that I will as a teacher.

The Anti-Answer-Getter

I must start off today saying that I have never experienced such a fantastic start to the school year than I have this year.  The energy within our department is almost palpable, and I know that the students are catching on as well.  Here’s an email I got from one of my co-workers this morning:Untitled

I want to give credit to Teresa and Dianna because they were more of the driving force behind encouraging the use of Plickers.  I’m thrilled with the result nonetheless.

The group that impressed me the most today was my first hour, math recovery.  These are kids who have previously failed a math class and are recovering credit.  You can imagine the lack of math love in the room.  Here was their prompt:

Make 37 1885 C

 

SPOILER ALERT:  I’m going to reveal the answer so if you’d like to try it for yourself, stop reading.

I had them come up with ways they could make 37 using different amounts of numbers.  It seemed that we could get 36 using 10 numbers or 38 using 10 numbers but couldn’t quite get 37.  Then we tried getting 37 using 9 numbers or 7 numbers.  We had some good discussion about which strategy seemed the most useful.

One student in particular mentioned that he wanted to add some and subtract some but he felt he would always be short without a 2.  I had them share their results on the board and I was very satisfied with the effort I’d seen.

I was nervous about the answer reveal because as it turns out, it’s impossible to make 37 with 10 numbers.  What we were able to do is focus our attention on what we DID discover, rather than the fact that there was no answer.  We discovered that Odd + Odd = Even, Even + Even = Even, and Even + Odd = Odd.  Because there is an even number of odd numbers, an odd sum is not possible.  I was more pleased with this result than any single answer they could have given me.  I expected a backlash from a group of students used to answer-getting but found that they were able to embrace a learning activity that didn’t one final answer.  I’ll mark that class period in the win category.

Talky, Talky, Talky. No More Talky.

Because I’m hyper-interested in helping to create a space where kids feel comfortable sharing ideas and making mistakes, I began my classes today with the Talking Points activity that Elizabeth Statmore (@cheesemonkeysf) shared at Twitter Math Camp this past summer.  Learning that a tight rule of No Comment was a cornerstone of the activity intrigued me to try it in my classroom.  Productive conversations in math class don’t happen automatically very often.  I’m hoping that using this process helps students to use exploratory talk around mathematics.

The No Comment was difficult for students, but I realized quickly, it was difficult for me as well.  For example, when debriefing with the whole class, I was tempted to comment…after each group presented.  I had to tell myself each time a group gave a summary that there wasn’t a need for my comment.  I was tempted to clarify thinking or give a follow up explanation.   I needed to let the groups own their experience.

This realization made me cognizant of the other times a comment by me is unnecessary following a student response.   How many times have I insisted on having the last word in the class?  How many times have I summarized a student’s thinking for him or her?  Hopefully, as students move toward being more exploratory with their discussions, I can move toward being less dominant in the conversation.

Facing Fear

It’s always fascinating to me to watch students step into a new classroom and immediately search for their social comfort zone.  Students aren’t unique in this phenomenon; they are just the group of humans in which I interact the most.  Today being the first day of school, the visible and invisible social boundaries that students draw between one another were clear as I silently observed.

As someone who struggled fitting into a unique social group growing up, I’m most interested in encouraging kids to break away from their cliques. After reading much of what Ilana Horn has written on the subject, I also began to see links between being socially extroverted and status in the mathematics classroom.  For example, kids who are quiet and mostly keep to themselves don’t often have opportunities to display their “smartness,” whereas an outgoing kid willing to contribute voluntarily to class discussion would have their “smartness showcased regularly.  Interestingly enough, when doing the “personality coordinates” activity with my college algebra class today, one group created this graph:  IMG_6508

They defined social achievements as number of friends and academic achievements as GPA.  It allowed us to have a nice discussion about grades and overall intelligence as well as some lovely talk regarding different definitions of social achievement. I look forward to continuing these conversations over the course of the trimester and challenging them to let their popularity guards down.

On a similar note, I tried the Blanket Challenge in my Algebra 2 class.  If you have not read this chapter in Powerful Problem Solving, I’m not sure why you are still sitting here.  Go read it! What impressed me with this group of kids, was they were willing to step out of physical comfort in order to achieve the result they wanted.  IMG_6505 IMG_6506

On the first day of school, in a class that’s tough to adjust to, I can’t begin to express how proud I am of this group of kids for their willingness to work together respectfully and successfully.  I’m hoping to build on the results from this activity in the days to come.