# Number Talks – Bumps in the Road

Today, I presented, with my colleague, Denise Anderson, a session on Number Talks at the Minnesota Department of Education.  The topic was ‘Where do we go from here:  Managing bumps in the road.’

Here are the slides if you are interested:  https://docs.google.com/presentation/d/1jMvhEoxexddOA7e3ncYIhbNM62iy3CGUeyfeNpqYH34/edit?usp=sharing

I’ll be presenting this session as a webinar on Tuesday, May 24th.  Details here:  http://education.state.mn.us/MDE/Welcome/MDE034256

My favorite slide:

# Stringing Students Along

If I’ve done one thing consistently this year, it has been Number Talks in my Probability and Statistics classes.  I have seen students who, at the beginning of the trimester, told me flat out, “I can’t do math in my head.” Now that Trimester 1 is coming to an end, those same kids are volunteering multiple strategies in these mental math challenges.

During the trimester, we started with the dot image below and have moved through the four operations, onto decimals, and even dabbled in fractions and percents.

How many dots are there?  How did you count them?

What’s important to me with these number talks is the visible improvement I saw in my students’ confidence and flexibility with numbers.

I’ve shared before about my experience with number talks and I plan to continue these throughout the rest of the school year.  But at the NCTM Regional conference in Minneapolis a couple of weeks ago, I had the pleasure of attending Pam Harris’s session on Problem Strings.  I found that problem strings are very useful when wanting to elicit certain strategies or move toward generalization of a strategy.

Here are my notes from a problem string I did recently with the same group of students I have been doing number talks with.

I noticed:

• Many students did not use “17 sticks in a pack” to figure out sticks in 10 packs
• Many more strategies than expected were shared to find the number of sticks in 6 packs of gum.
• Most students were able to generalize about number of sticks in n packs.
• Participation increased with the multiple opportunities to volunteer their strategies.
• Students could see relationships between the numbers and find the solution in multiple ways because of that relationship.
• There are many implications of these problem strings in secondary mathematics. In this example, the slope formula can be easily elicited through further exploration of the table we made.

I’ve read all of Pam’s books, but getting to see her present problem strings in person really illuminated how these can be useful in my classroom. Thanks, Pam, for opening my mind to this and letting me fangirl you.  I’m looking forward to doing more of these, including recording them.  Stay tuned.

Yesterday:  As much as I get frustrated by the attitudes and actions of my 5th hour, much of my resentment stems from the fact that I believe the situation in my class is my fault.  I feel like I’ve conditioned them by accepting disrespectful behavior in order to keep kids in the classroom.  As a result, the entire learning environment has suffered.

Today: So that was the beginning of yesterday’s post. I was concerned going into today’s class. Last Friday of the year and the fact that the school has been a circus compounds the issue. I was expecting chaos, but what I got was mathematical success. The difference was I demanded their attention in a more respectful way. I was firm, but polite, and it payed it’s dividends in student engagement.
We began with a simple math talk that I modeled from Fawn Nguyen’s March 21st math talk:

Today is the 30th day of the month.  Write as many equations you can that equal 30.

I gave them about 5 silent minutes. Then I let them use their calculators to come up with more gems.  At the end, I had them share their favorite or most complicated equation on the whiteboard.

Here’s where the real magic happened.

Me:  Look up here and see if there are any equations you disagree with

Lots of discussions ensued about order of operations, square roots, rounding, parentheses, etc.  Overall, the activity lasted 30 minutes, which was about 29 more minutes of math than we did yesterday.

But the fun doesn’t stop there.  To boot, I introduced the Mathalicious Decoder Ring Lesson.  We watched the Christmas Story clip and talked about what a decoder ring does.  What I liked is that most of them were trying to figure out how the decoding worked, rather than just “get the worksheet done.”