An Open Letter and a Note of Gratitude

“I’ve been married for forty-two years which means I’ve been to forty-two state fairs.”  I’m not sure why this little tidbit from the Park-and-Ride attendant didn’t instantly put me in great spirits.

And then I walked up over the hill, took one look at Math-on-a-Stick, and the indifference melted.  The humble smile of satisfaction from Christopher Danielson was enough to warm the cockles of my heart for months.  But the kids and the konversations around shape, number, space, and patterns were nothing short of inspiring.  “This is exactly how I envisioned this,” Christopher said.  And his vision becoming state-fair reality is going to change the way parents and kids talk about math.  I love hearing kids explain their reasoning.  It’s what makes my job as an educator joyous.


 

Dear Adults: (all of us)

The children in your life are creative, driven, passionate, and intelligent.

GET OUT OF THEIR WAY.

Ask them how they see the pattern. Let them experiment with the shapes.  Let them lead the conversation.

Listen to what they notice. Encourage them to say more.

Then ask them how they know.

The “right” answer is so much less important than a child leading you on their own mathematical journey.


 

Thank you, Christopher.  Today you not only added a great new structure to the landscape of the Minnesota State Fair. But tonight, in hundreds of households, the conversation around mathematics is changing. And after nine more days, thousands more will get a chance to embrace this shift.  When my husband and I have been married forty-two years, we’ll go to the fair and stop by and listen to the kids talk at Math-on-a-Stick.

 

wpid-img_20150827_123520.jpgwpid-wp-1440742207684.jpeg

wpid-wp-1440742216310.jpegwpid-wp-1440742225148.jpeg

A Visual Comeback

Please excuse me while I geek out for a few minutes about Visual Patterns.  My love affair with this versatile website has made the transition from autumn to winter as I engage in select patterns with my Algebra classes.  I didn’t start using these until a unit on quadratics last trimester, so I was very pleased that a linear pattern could create just as much conversation and mathematical excitement.

For example, this is a replica of pattern #114 that we looked at in class today:

Lego 114

The equation y = 3x + 4 was not terribly difficult for these kids to decipher. But the fun began, as usual, when I asked them to relate their equation back to the figure.  Here are some of their findings:

1.  Students used the idea of slope and recognized that the slope is the change in the number of squares divided by the change in the step.  The y-intercept is the value when the “zero” step is determined.

2.  There are always 4 squares in the corner and each “branch” off of that square has a length of x.

3.  SImilarly, there is one square in the corner and each branch from that one square has a length of x+1

4.  There are always x “sets” of three squares, and four squares left over.

5.  The arithmetic sequence formula works nicely here, common difference of 3 and first term of 7.

The final observation deserves its own paragraph, as I was completely blown away by the thought process.  The student noticed that if we made each step in the pattern a square, then the formula would be (x+2)^2.  He then noticed that the portions that were missing were two sections, each consisting of a triangular number.  Recalling the formula we worked out last week (by accident) for the triangular numbers, (.5x^2 + .5x) he took (x+2)^2 -2(.5x^2+.5x) and simplified it.  The result is, you guessed it, 3x + 4.  Below is a photo of this amazing insight:

Pattern 114 Triangle

What I like most about these visual patterns this time around is that it helps the kids get comfortable having a mathematical conversation.  Students build on each other’s thinking and discover new insights by listening to their classmates.  This was difficult to do last trimester with a similar group of kids.  I think that by starting with a linear patterns, rather than quadratic, the students have acclimated themselves to different ways of approaching the patterns.

Oh, UNIfix cubes! I get it!

I’ve done a lot of professing my new found love for Visual Patterns lately, and today will be no exception.  If I haven’t convinced you of the flexibility and differentiation available in these seemingly simple patterns, let me have one more stab at it.

Today, my College Algebra class looked at pattern # 28.

I took out the unifix cubes for those who wanted to actually have the three dimensional shape in front of them.  This was helpful for some, however, I realized the limitations of the cubes…the fact that they only will “fix” to one other cube (hence the name UNIfix). This may not be mind blowing information to many of you, but I just put those two things together in my brain today.  Because of the one fixture, they were hard to take apart in usable “chunks” without the whole figure falling apart.

Anyway, back to the pattern. I wanted to workout ahead of time all of the possibilities that students would come up with so that I could more effectively use the 5 Practices of Orchestrating a Mathematical Discussion and anticipate their responses.  I’ll tell you what, I played around with those expressions so many times, and thought for sure I had came up with at least the majority of responses I would encounter. They were all quadratic. Then, out of left field, the students threw me for a loop. The majority of students came up with n^3 – (n-1)^3!

Now, you might be thinking, duh! It’s 3 dimensional AND a portion of a cube.  However, my algebraically trained brain started with quadratic expressions and stuck with them since I saw from the difference of differences table that this pattern was in fact, quadratic.  Yes, the n^3 terms get cancelled out when the expression is simplified and the simplified expression becomes quadratic but this opened up a whole new avenue of discussion with my class. We were now able to talk about the misconceptions of expanding something like (n – 1)^3, because if they found the expression for the nth step another way, they could use that as a check for simplifying their answer.

What was eye opening for some of the students that chose an algebraic method (such as using a table of differences and then setting up a system of equations) was that the “c” value in ax^2 + bx + c was hard to conceptualize.  It was very difficult for students to grasp that the first term and the non-existent “zero term” had the same number of cubes.

Finding the surface area formula for step n was even more awesome, because it was in this portion of the pattern that I was able to see real growth in my students’ willingness to attempt a more conceptual method.  There are certain students whose default method is to set up a system of equations using the table of values for the pattern steps. These students are noticing more that they encounter errors much more often than those who have a conceptual understanding of how the pattern is built.  I found this time around, less students relied on the algebraic method (about 7/35) whereas last week, probably 15/35 of them were starting algebraically.  As we are covering more and more concepts in this course, the students are realizing that they do not remember specifics about formulas and procedures from their previous algebra courses.  They remember “learning” the topics, but they usually can’t quite nail down the specifics of each method.  I really feel that we are making some good headway toward solidifying their conceptual understanding of the algebra as I see more and more students break away from the procedural methods toward a more conceptual one.

We talked about this pattern for an entire 60 minute class period.  You know it’s a good day when kids look at the clock and say, “whoa! Class is over already?”

A Visual Patterns Trifecta

This is my third (and most exciting) post about my new found love for Visual Patterns.  My enthusiasm stems from a growing appreciation of how these patterns can be used in such a wide range of grade-levels, including advanced algebra.  The use in an elementary or lower-level secondary classroom is easy to see.  However, the teacher and student need to dig a bit deeper into the make-up of these patterns in order to generalize them.

For example, here is Pattern #8.  Kudos to Fawn Nguyen on this one.

It’s not immediately apparent what step 4 should be.  But even more so, the quadratic nature of this pattern is not necessarily simple to comprehend.  From yesterday’s pattern #5, the students had a method for finding the number of penguins in the nth step by converting the penguins into a table and creating a system of equations.  I didn’t want to encourage this method, as it is very procedural and tedious.  However, it was a good place for students who liked to work in a more algebraic way to feel successful.

Also, the table allowed them to explore what the difference of differences really told them.  I had a student, let’s call her Kay, ask “I wonder what the constant difference of differences represents in our equation for the nth step.”  She came up with a conjecture by comparing it to our problem from pattern #5.  Kay concluded that the “a” value in the equation ax^2 + bx + c = y is half of the constant difference of differences.  I challenged Kay to continue to examine these values in future problems to see if her conjecture holds true.  I had another student, Em, wonder if that meant that the “a” value in a cubic function is equal to one third of the difference of difference of differences.  This she will investigate as well.  What is very exciting about these questions is that they were non-existent 5 weeks ago.  It wasn’t that the students didn’t WANT to be mathematically curious, they just didn’t know HOW.  It was a huge thrill for me as a teacher to see these kids move from looking at a math problem with a single solution to being able to ask new questions.  A nod to Christopher Danielson for helping me realize that learning is having new questions to ask.

  Back to the problem at hand:  How many penguins are in step n?  A few of the students were able to get the answer without using a table.  These were mostly the students who like to do things in their head.  The ones who want to fully process the problem in their brain, but not write any of it down.  [Side note:  these are usually the ones who are brilliant with numbers but get lower grades in traditional math classes because they don’t want to “show their work.”] Anyway, I wanted to challenge those who used the table method and set up a system of equations to relate their model back to the picture.  Spoiler alert!  The answer is 1/2n^2 + 1/2n + 1, but I wanted my students to be able to relate that back to the picture.  What do the individual pieces of the expression represent in penguins? This way, the students were able to make that connection of a picture or pattern that didn’t seem quadratic to begin with and flesh out its quadratic properties.

When the students figured this out, it was a magical moment.  I had to capture it:

IMG_2993

Another cool experience with this problem:  the same evening that I did this problem, our school hosted parent-teacher conferences.  One of my students came into conferences with her parents and her three little sisters, ranging in age from about 5 to 10.  One of the little sisters sat down and wanted to be part of the conference.  I pulled up the visual pattern and asked her how many penguins would be in the next step.  It was a validation of my initial thoughts of how open and accessible these problems are to all levels of mathematics.  Here was an 8? year-old looking at the same pattern that her 17 year-old sister explored earlier that day.  And it was mathematically applicable to them both.  Beautiful.