Nrich-ing New School Year

I have made no secret of my unwavering devotion to Nrich.  This University of Cambridge-based website is a treasure trove of rich tasks.  The best part about this website is the ability to engage students with abstract algebra concepts.  Very infrequently does Nrich apply their problems to any real-world concept.  They let the arithmetic itself set the hook.  And the algebra solidifies the concept.

Example:

Special

As a bonus, now that school is underway, they have many “live” problems which are open for class submission.  I’m hoping that my class might want to submit solutions for the Puzzling Place Value problem.

There are a lot of great problems here that I’ve used in my classes.  The only problem with available new problems is now I want to devote all my time to solving and implementing them!

 

 

Bingo Lingo

This time of year, the standards used to measure the success of a lesson may look different than they do at other times of the year.  For example, some teachers might consider “Students not using worksheets to have paper airplane throwing contest” to consistute a lesson well executed.  To a certain extent, I am joking, but there’s a thread of reality there.   Think back to a time when your excitement for a future event prevented you from doing anything productive.  Now imagine leading a room full of 32 people with that same excitement and handing them a manual for their new scanner/copier.  You get the idea.

I can usually distinguish between my being pleased with a lesson based on lowered expectations and my being pleased with a lesson because of a high level of learning and collaboration.  Today was the latter, with my 9th grade probability and statistics class again.

I found this on Don Steward’s website.  If you have seen his blog and are not fascinated, or at least intrigued, we cannot be friends.  He comes up with some amazingly simple, yet elegant classroom problems.

Picture1  Picture2 Picture3

 

We started this yesterday.  They are in groups of 4; the oldest student in the group got to choose first and so on.  Then they played three “games” using a pair of dice and a whiteboard with their numbers on it.  Today, they worked on figuring out why the “6,7” card was the best and determining how to rearrange the numbers  on the cards to make them all equally likely to win.

I’ve had this glossy paper in my room forever, so I decided to have them make a mini-poster with their solution and some reasoning.  Here are my two favorites:

0521151413a-1 0521151415a-1